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HEAT TRANSFER WITH LAMINAR FLOW IN CONCENTRIC 
ANNULI WITH CONSTANT AND ARBITRARY VARIABLE 

AXIAL WALL TEMPERATURE 

by 

R. Viskanta 

ABSTRACT 

An analysis has been performed to determine the heat 
transfer character is t ics for laminar forced-convection flow 
in a concentric annulus with prescr ibed surface tempera­
tures . Three distinct problems were considered: (a) wall 
temperature prescr ibed at both the inside and outside wall; 
(b) inside wall temperature prescr ibed and the outside wall 
insulated; and (c) inside wall insulated and outside wall tem­
perature prescribed. The solution for temperature distribu­
tion was similar to that obtained by Graetz for laminar heat 
convection in a pipe with uniform wall temperature . Expres ­
sions are presented for heat flux, mixing cup tempera ture , 
and Nusselt number as a function of downstream position. 
Eigenvalues and eigenfunctions were computed on an analogue 
computer for several values of the ratio of the inside to the 
outside radii for the above boundary conditions. Mixing cup 
temperatures , local and fully developed Nusselt numbers , 
and thermal entry lengths are presented graphically. 

The solution of Problem (a) was extended to the situ­
ation in which the temperatures of the inside and outside 
walls of the annulus are not equal. By utilizing the method 
of superposition and the solutions already obtained for P rob­
lem (a), the temperature distributions were determined. By 
way of illustration, heat fluxes were calculated for several 
values of the temperature ratio (Twj - To)/(Two " TQ). 

Results were then generalized to apply to the situa­
tion of arbi t rary longitudinal variation of the wall t empera­
tures of the annulus. As an illustration of the method, an 
extension is explicitly given for a linear increase of wall 
temperature with axial distance. 



1. INTRODUCTION 

The problem of laminar forced-convection heat t ransfer is of con­
siderable pract ical interest and has been studied extensively since 1883. 
The heat transfer in a concentric annulus is a natural generalization of the 
Graetz problem, since flow between two paral lel plates and in a pipe are 
special cases for values oo and 0, respectively, of the pa ramete r r i / ( r o - r i ) . 
Most of the existing analyses for laminar flow and heat transfer in passages 
have been corLfined to c i rcular tubes or paral le l p la tes . These passages 
have been analyzed extensively because their simplicity makes them ame­
nable to analysis . In recent years the problems associated with the use of 
odd-shaped coolant passages in heat exchangers, in heterogeneous nuclear 
r eac to r s , and in other applications have made the process of heat transfer 
in an annulus of engineering importance. 

It is assumed here that the fluid with constant physical proper t ies 
enters the annulus with a uniform tempera ture and a fully developed laminar 
velocity profile, and up to some point (x = 0) the fluid is i sothermal . Three 
distinct problems are considered: 

(a) for X > 0 the wall t empera tures a re prescr ibed at both the 
inner and the outer walls; 

(b) for X > 0 the inner wall tempera ture is prescr ibed and the 
outer wall is insulated; and 

(c) for X > 0 the inner wall is insulated and a tempera ture is 
p rescr ibed at the outer wall. 

In Section 2 of this repor t , consideration is given to problems with 
constant p rescr ibed wall t empera tu res . In addition, for Problem (a) the 
assumption is made that the wall t empera tures are the same. In Section 3, 
Problem (a) of Section 2 is generalized, and solutions a re obtained with 
different, but constant wall t empera tures prescr ibed along each of the 
two walls . In Section 4 of this report the problems are generalized to the 
situation of an a rb i t ra ry axial variation of the surface t empera tures . 

To the author 's knowledge, laminar flow heat t ransfer in an annulus 
with prescr ibed wall t empera tures has been studied only by Murakawa. (1-4)* 
In these references , Murakawa has presented integral equation formulation 
as well as some experimental resul ts for water heated from the inside wall 
with the outside wall of the annulus being insulated. However, Murakawa(3) 
has ca r r ied his solutions to the point of numerical calculation only for 

*A general and complete study on laminar flow heat t ransfer in an 
annulus by Lundberg _et _al. (^'') canne to the author 's attention when 
this report was in p r e s s . 



Problem (b) and for one value of the ratio of the inside to the outside radius 
of the annulus. A more extensive bibliography of similar problems for 
pipes and paral lel plates can be found in Refs. 5-8. 

The analysis which is made here is similar in mathematical ap­
proach to that presented by Graetz(9) for laminar forced convection in a 
round pipe with isothermal wall. The classical t reatment of this problem 
by Graetz utilizes separation of variables which reduces the energy equa­
tion to a Sturm-Liouville equation. After the eigenfunctions and eigenvalues 
of the Bessel- type equation have been determined, the heat t ransfer pa ram­
eters of interest can be readily determined. The first eigenfunction gives 
the solution far from the entrance of the annulus and an increasing number 
of eigenfunctions are required to obtain accurate temperature distribution 
as the distance from the entrance is decreased. 

2. HEAT TRANSFER IN AN ANNULUS WITH PRESCRIBED 
CONSTANT WALL TEMPERATURE 

2.1 Analysis 

2.1.1 Mathematical Statement of the Problem 

The coordinates and geometry of the system are shown in 
Figure 1. Fluid flows in steady laminar motion in an annulus with an es ­
tablished velocity profile. For x < 0, both the fluid and the walls have a 
uniform temperature TQ. For x > 0, there is prescr ibed a surface tem­
perature at the walls of the annulus. The problem is to find the tempera­
ture distribution and the variation of the heat transfer coefficient along the 
length of the annulus. 

Subject to the limitations noted below, the energy equation 
describing the problem is 

dT k a / ST \ QI 

""P p̂ 17 =T 17 V "STJ ' 

In writing Eq. (1) the following assumptions are made: 

(a) The physical propert ies of the fluid are constant. 
(b) The viscous energy dissipation is negligible. 
(c) The axial diffusion of heat is negligible compared to 

the radial diffusion. 

In the immediate region downstream from a step change in 
wall t empera ture , the axial tempera ture gradients could be large and of 
the same order of magnitude as the radial temperature gradients. The 



effect of a x i a l t e m p e r a t u r e g r a d i e n t s on t e m p e r a t u r e d i s t r i b u t i o n and hea t 
t r a n s f e r h a s b e e n s tud ied , for e x a m p l e , by Schneiderv '^) and Singh.(8) They 
found tha t the effect of a x i a l hea t conduc t ion on hea t t r a n s f e r is n e g l i g i b l e 
for P e =: 10. 

The s t a t e m e n t of the p r o b l e m is c o m p l e t e d by spec i fy ing the 
b o u n d a r y cond i t ions for the function T ( x , r ) . The following b o u n d a r y c o n d i ­
t ions a r e c o n s i d e r e d : 

P r o b l e m (a) 

T ( 0 , r ) = To, r / r^ / ro; T ( x , r i ) = T(x,ro) = T ^ for x > 0 

P r o b l e m (b) 

T ( 0 , r ) = To, r / r j / ro: T ( x , r i ) = T^ ar 
Sr 

= 0 for X > 0 

r = ro 

P r o b l e m (c) 

T(0 , r Lo. r / ^i / ro; 
ST 
Sr 0, T(x,ro) = T,„ for X a 0 

(2) 

2.1.2 Fu l l y Deve loped Ve loc i ty P r o f i l e in L a m i n a r F l o w 

The v e l o c i t y d i s t r i b u t i o n for fully deve loped l a m i n a r flow in 
a c o n c e n t r i c a n n u l u s with c o n s t a n t p h y s i c a l p r o p e r t i e s i s g iven by Lamb. i l ' ^ ) 
Since the def in i t ion of the d i m e n s i o n l e s s r a d i u s u s e d in th i s r e p o r t i s dif­
f e r e n t f r o m tha t of L a m b , the d e r i v a t i o n of the v e l o c i t y d i s t r i b u t i o n is 
p r e s e n t e d . The d i f f e r e n t i a l equa t ion of m o t i o n for fully deve loped l a m i n a r 
flow is 

du dp 
dx 

(3) 

I n t r o d u c i n g a d i m e n s i o n l e s s r a d i u s def ined a s ^ = r / r o , Eq. (3) b e c o m e s 

(4) 

The b o u n d a r y cond i t i ons a r e : 

e a? V a? 
2 dp 

^ ° 1 ^ 

0 a t l| ^i) 

a n d 

u = 0 a t ^ l ( i (5) 



Since for fully developed flow the p re s su re gradient is con­
stant, the solution of Eq. (4) with the boundary conditions Eq. (5) becomes 

4/i \ dx / [_" 1 - 1 ^ 
( l - l j ) 
i n l i in i 

The average velocity, defined as 
1 

u l Ai 
li 

| d | 

(6) 

(7) 

become s 

-u ^° " - " 4 M m-[ 4 ( ^ - ^ 1 ) + 4 i n | , J 

4( i - i : ) 

_ "-o / dp 
Sfi Vdx 

, (1- II) 
. ^ ^ ^ ^ - I T I -

The ratio of the local velocity to the average velocity is 
given by: 

1 
- - ^ -

1 + l i + — — J — 
i n l i _ 

1 

(8) 

(9) 

It can be noted that the velocity profile is not symmetrical about the mid­
point of the gap between the inside and outside radii . The point where 
maximum velocity occurs is shifted towards the inside wall of the annulus. 
When l i —* 1, the flow in an annulus approaches the flow between two 
parallel plates. 

2.1.3 Solution of the Problem 

Introducing dimensionless variables , Eq. (1) and the boundary 
conditions Eq. (2) become 

(10) 

and 
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Problem (a) 

6(0,1) = 1; 1 / | . / i ; e(c,|i)= e(C,i) = 0 for c - 0 

Problem (b) 

5(0,1) = 1; l / l i / l ; e(C.li) = 0, de 
0 for 

1=1 

Problem (c) 

e(0, | ) = 1; l / l i / l ; 

respectively. 

I=li 
0, e (C, l ) = 0 for C 2:0 

r • (11) 

The method of separation of variables yields the solution 

CO 

e = X '^nRnd) exp ( -> .^g . (12) 

(13) 

14) 

in which R^d) satisfies the equation 

( | R ; I ) ' + X^flRn = 0 

with the boundary conditions: 

Problem (a) 

Rn(li) = Rn(l) = 0 

Prob lem (b) 

Rn(?i) = 0, R ; , ( I ) = 0 

Prob lem (c) 

R^^di) = 0, R„(l) = 0 

Equation (13) with its boundary conditions Eq. (14) belongs to 
the well-known class of differential equations of the Sturm-Liouvil le type. 
Solutions are possible only for a discre te , though infinite, set of X values. 
The set of constants Cĵ  a re now to be determined so that the condition 

e(o , | ) = 1, ( 1 / l i / 1) 
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is satisfied. From the orthogonality property of the solutions, it can be 
shown(ll) that the coefficients c^ are given by 

n. IfRndl 

15) 
-n /.I 

/ l l ^^^^"^ 

Integrating Eq. (13) with respect to | from l i to 1, we obtain 

-^li 
IfRndl = - - \ [Rk(l) - l iRn( l i ) ] (16) 

It can be further shown (details omitted here) that for boundary conditions 
Eq. (11a) 

IfRndl = 2 ^ , 
SR„ SR„ 

Sx, S | J ?i 

l i 
1=1 

ciR„ S R ^ 

SXn S| J^^^. 
. (17) 

and the coefficients c^ can be expressed as 

' d R „ \ ^ /SRn 

^ ? 4 = / ' ^ ^ ^ ? ' i = i i j 

Xr 
SRn SRn 

hXr d 
- l i 

SRn SRn 

| = . V^^n ^ ? 4 = l i 

(18) 

The Xn- Rn> ^'"•'^ '̂ n were found with the aid of an electronic 
analogue computer. The details of the numerical solution are given in Ap­
pendix A. It should be noted that the solution of Eq. (13) with the boundary 
conditions Eq. (14) can also be obtained by another method. For example, 
the solution of Eq. (13) with the boundary conditions Eq. (14c) can be ex­
pressed as 

R( |) = X ^^ [Jo(|3n?)YoOnli) - JoOnliJYoOnI)] (19) 

where ^ ^ = \n^- The eigenfunctions R( |) are therefore an infinite 
se r i es of Bessel functions of order zero. These vanish when | = | i , and 
vanish also when | = 1, provided j3n is a root of the equation 

J o O j Y o O n l i ) - Jo(|3nli)Yo(/3n) = 0 (20) 
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H o w e v e r , the d e t e r m i n a t i o n of the e i g e n v a l u e s /3n and the coe f f i c i en t s An 
is v e r y involved . ( ° ) F o r th i s r e a s o n , the so lu t ion of E q s . (13) and (14) w a s 
ob ta ined on an ana logue c o m p u t e r . 

2.1.4 E x p r e s s i o n s for Some Hea t T r a n s f e r P a r a m e t e r s 

F r o m the t e m p e r a t u r e d i s t r i b u t i o n , Eq . (12), v a r i o u s q u a n t i t i e s 
of e n g i n e e r i n g i n t e r e s t can be d e t e r m i n e d . F o r e x a m p l e , the l o c a l h e a t flux, 
hea t t r a n s f e r coeff ic ient , and N u s s e l t n u m b e r m a y be d e t e r m i n e d f r o m the 
def in i t ions 

qi(x) - k 
ST " I \ 1 S T • qo (x) = k -g^ 

hD„ 
Nu 

T - T k 

w h e r e the mix ing cup t e m p e r a t u r e is g iven by 

h 
I r u T dr 

ru dr 

(21) 

(22) 

The loca l hea t flux at the i n n e r wa l l i s g iven by 

5 i ( 0 = - k ^ 
k ( T ^ - T o ) 

X CnRk(l i ) e x p ( - \ ^ C ) . (23) 

and at the ou te r wal l b \ 

'loĈ ) = k f 
k(T^ 

Y, CnR;,(l) e x p ( - X ^ C ) - (24) 

Nu 

The N u s s e l t n u m b e r can be e x p r e s s e d as 

q"De q"De 

(Tv i(Tv 
(25) 

w h e r e the d i m e n s i o n l e s s m i x i n g cup t e m p e r a t u r e Qj^ 1^ def ined a n a l o g o u s l y 
with Eq . (22): 
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r | f e d | Y. ' ^ n e x p ( - X ^ C ) j | f R n ( l ) d | 
J l i n=o '^ l i 

/ . : 
i f d i f ' i f d i 

' l i 

It can be shown tha t 

4 X ^ [Rn( l ) - l i R k d i ) ] e x p ( - X ^ O 
n=o -^n 

' ™ ^ " ( 1 - l i ) 

T h u s , the N u s s e l t n u m b e r s can be e x p r e s s e d as 

( l - l i ) ( l - l ! ) Y ' ^nRk i^ i l exp (-X^„a 

Nui 

and 

2 J - ^ Cn[Rii( l ) - l i R k ( l i ) ] exp(-X?i(;) 
n=o ^ n 

( l - l i ) ( l - l i ) Z '=nRn(l) exp(-X^„(;) 

Nuo =-

2 X - T ^ n [ R n ( l ) - e iRk( l i ) ]exp( -X^^C) 
n=o 

(26) 

f' | fd | = i ( l - | ^ . (27) 
•>'?i 

In t roduc ing E q s . (16) and (27) in Eq . (26), we get 

(28) 

(29) 

(30) 

at the i n n e r and the ou te r s u r f a c e s , r e s p e c t i v e l y . 

The def ini t ion of hea t t r a n s f e r coeff ic ient , and t h e r e f o r e of 
the N u s s e l t n u m b e r , for e x a m p l e , as given by E q s . (29) and (30) i s not 
unique in the s i tua t ion when hea t i s t r a n s f e r r e d f r o m both s u r f a c e s . This 
h a s a l r e a d y been e n c o u n t e r e d by Jakob(9) ^nd Seban.(12) x h i s i s b e c a u s e 
the m i x i n g cup t e m p e r a t u r e , for a given ve loc i t y d i s t r i b u t i o n [see Eq. (28)], 
depends not only on the hea t flux at the s u r f a c e in c o n s i d e r a t i o n , but a l s o 
on the h e a t flux at the o the r s u r f a c e . 
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When (̂  —" 0, Nu —" co. For values above a cer ta in (̂  = Ce-
Nu will not differ by more than a few per cent from the final asymptotic 
value Nua- The region between 0 and Ce is called the thermal entrance 
region. In this region Nu decreases from an infinitely large value at 
t, = 0 to a value Nu^ for i; > Ce- For large values of C only the first t e r m 
of the ser ies for Nu is of importance, so that 

( 1 - I i ) ( l - I i ) XoRi(li) (3j , 
^^"^.i - - 2 [ R ; , ( l ) - | i R i ( | i ) ] 

and 

( l - | i ) ( l - | f ) x g R i , ( l ) 

^^^'O - 2 [Rid) - | iR;,( | i )] ^ ' 

are the asymptotic or fully developed Nusselt numbers at the inner and the 
outer walls, respectively. 

Often in analysis an average heat flux and an average Nusselt 
number with respect to tube length is of more utility than the local heat 
flux and Nusselt number. If the average heat flux over the (reduced) length 
t is defined as 

q"(C)dC , (33) 
/o 

it can be shown that 

- „ k(Tw-To) 
9,-

Xfi Cr„ 
£ CnRk(l) [1 - exp(-X?iQ] (34) 

n=o 

and 

% = 
kfT - T ) '̂  

Z '=nRk(l) [1 - exp(-X^nC)] (35) 
-̂ n =̂̂ 0 n=o 

as average heat fluxes at the inner and outer surfaces, respectively. 

If the average Nusselt number is defined as 

_ 1 r 
Nu = -r- I Nu dC (36) 



for the c a s e of an i n s u l a t e d o u t s i d e w a l l , it can be shown by subs t i t u t i ng 

Eq. (29) into Eq . (36) tha t 
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Nu; = 
( 1 - I i ) ( l - I i ) 

2 | iC 

Y, ^nRli(li) exp(-X^C) 
n=o 

Z CnRn(l i ) , -.zf, 
-I e x p ( - X n C ) 

dC • (37) 

R e c o g n i z i n g the i n t e g r a n d a s of the f o r m - d ( i n y ) and i n t e g r a t i n g , we find 

N u i =• 
( 1 - I i ) ( l - I i ) 

2 | i C 
Y" '^nRii(^i) , 2 „, 

• i n 2^ — exp( -Xn '=) v^ 
(38) 

Subs t i tu t ing the l i m i t s of i n t e g r a t i o n and noting [ f rom Eq. (28)] tha t 

C n R k d i ) ( 1 - l i ) z 4 | i 

we get 

_ ( l - l i ) ( l - g i ) „ 

N-i =—nr^—^^ 
( i - i i ) 

^ C n R n d i ) , -.z r.\ 
^?i Z., i e x p ( - X n g 

(39) 

2.2 D i s c u s s i o n of R e s u l t s 

The f i r s t s ix e igenfunc t ions for s e v e r a l v a l u e s of the r a t i o of the 
i n n e r to the o u t e r r a d i u s of the annu lus a r e p r e s e n t e d g r a p h i c a l l y in 
F i g u r e s B - a , B - b , and B - c for P r o b l e m s (a), (b), and (c), r e s p e c t i v e l y . 
The c o r r e s p o n d i n g e i g e n v a l u e s X^, coe f f i c i en t s Cn, and p r o d u c t s Cn Rn( l i ) 
and C n R n ( l ) o b t a i n e d in the i n v e s t i g a t i o n a r e given in T a b l e s B - a , B - b , 
and B-C ( see Append ix B) for P r o b l e m s (a), (b), and (c), r e s p e c t i v e l y . 

To the a u t h o r ' s knowledge , no a n a l y t i c a l s o l u t i o n s have b e e n o b ­
t a i n e d for the p r o b l e m s c o n s i d e r e d in th i s r e p o r t , and t h e r e f o r e the a c ­
c u r a c y of the r e s u l t s ob t a ined on the ana logue c o m p u t e r canno t be c h e c k e d . 
Add i t i ona l e igenfunc t ions a r e , h o w e v e r , n e e d e d to i m p r o v e the a c c u r a c y of 
the r e s u l t s for ( l / P e ) ( x / r o ) < 0 . 0 1 . N e a r the s t ep change in the wal l 
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temperature (x = 0), the infinite se r ies Eq. (12) converges slowly, and thus 
a large number of t e rms are needed. The evaluation of the higher modes 
of the eigenfunctions and eigenvalues of Eq. (13) becomes exceedingly more 
difficult, and the accuracy of the expansion coefficients dec reases . The re ­
fore, to obtain the solution of Eq. (11) as x —• 0 it would be advantageous to 
use the method of Leveque.(9) 

It is not practicable to give tempera ture distributions as functions 
of radial and axial coordinates for all the problems solved. However, with 
the aid of eigenfunctions and quantities given in the Appendix B, it is now 
possible to calculate the temperature distributions and heat t ransfer pa ram­
eters of interest . For practical purposes the mixing cup tempera ture , as 
defined by Eq. (26), is of greater interest than the t r ansver se tempera ture 
distributions. Likewise, the values of heat t ransfer coefficient or Nusselt 
number and heat flux as a function of (l /Pe) [(x/rg)] are of pract ical importance. 

In Figure 2 is a comparison of the longitudinal change of 9m for 
various values of | i for Problem (a). All curves have the ver t ical axis as 
a tangent at 0^1 = 1 and the horizontal axis as an asymptote which is ap­
proached practically exponentially from about (l/Pe) [(x/ro)] = 0.1 onwards. 
As ( l /Pe) [(x/ro)] increases , the tempera ture of the fluid approaches the 
surface temperature . From Figures 3 and 4, s imilar behavior C2in be noted 
for Problems (b) and (c). It is seen from the figures that values of Sj-^ for 
a given value of parameter | i and ( l /Pe ) [(x/rj)] are smallest in Problem (a); 
then follows those of Problems (c) and (b). These trends in 9j^ a re expected 
and can readily be explained from the consideration of the energy balance 
on the coolant in the annulus. 

Comparison of the ratio N U / N U ^ obtained in this study for various 
values of the parameter | i for the cases of insulated outside wall and for 
the insulated inside wall of the annulus is shown in Figures 5 and 6, r espec­
tively. The curves do not extend all the way to x = 0 because the ser ies 
appearing in Eqs. (29) and (30) have been truncated by using only the first 
six t e rms . The boundary conditions for the problems considered require 
a uniform temperature distribution at the annulus entrance. This produces 
an infinite radial temperature gradient at the wall at x = 0, and thus 
Nu —" 00 as X —» 0. It is seen from Figures 5 and 6 that, as x becomes 
very large, Nu becomes constant, corresponding to a constant coefficient 
of heat t ransfer . 

The Nusselt numbers have not been calculated for the case when 
equal wall temperatures are prescr ibed at both the inside and the outside 
walls of the annulus since the Nusselt numbers are not uniquely defined in 
this case. Figures 7 and 8 show the variation of the local heat flux at the 
inside and outside wall, respectively. 
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The ratio of the Nusselt number obtained with one adiabatic wall to 
that of the Nusselt number with heat t ransfer at both walls of the annulus 
as considered here is shown in Figure 9 for | i = 0.5. It is seen that the 
variation of this ratio with x/(Pero) is insignificant. 

Let us now consider the asymptotic, or fully developed, Nusselt 
numbers . In Figure 10 the calculated values are plotted against | i for 
both insulated inner and outer walls. Note that the case of heat t ransfer 
from the inside surface only when | i —" 0, because of the finite amount 
of heat t ransfer red by an infinitely small surface, must give r i se to an 
infinitely great Nusselt number. Because the first eigenvalue at | i = 0.95 
could not be obtained very accurately on the analog computer, the Nusselt 
numbers from | i = 0.8 to | i = 0.95 are shown by dashed l ines. As l i —• 1, 
the annulus approaches a paral le l -pla te system, and the asymptotic Nusselt 
numbers for the heat t ransfer at the inside wall only approach those for the 
heat t ransfer at the outside wall only. 

Of considerable pract ical importance is the knowledge of the condi­
tions under which the entrance effects must be accounted for in heat t ransfer 
calculations. In par t icular , it is of interest to know the value of (l/Pe)[(x/ro)]e 
for Problems (b) and (c). [For Problem (a) the entrance lengths obtained 
depend on the part icular definition of the Nusselt number used and therefore 
have not been determined.] Therefore, Figure 11 was prepared so that the 
thermal entrance lengths can be calculated for given values of Pe and ro-
The thermal entrance length is defined here as that value of ( l /Pe)[(x/ro)] 
at which the Nusselt number approaches to within 5% of its asymptotic 
(fully developed) value. Other authors have used a 1 or 2% cri ter ion for 
this entry length, but experimental heat transfer data are rare ly of suffi­
cient accuracy to warrant use of the 1% definition for comparison. 

The thermal entrance length decreases almost linearly with the 
parameter l j . Note also that, as | i gets nearer to unity, the thermal en­
trance lengths predicted for the heat t ransfer from the inside wall of the 
annulus only approach those for the heat transfer from the outside wall of 
the annulus only. This same conclusion can also be reached, as discussed 
previously, from physical arguments . It is expected that the thermal en­
trance lengths will be higher in problems with greater asymmetry of heat 
t ransfer at the walls of the annulus. 

The thermal entrance lengths calculated by Murakawa(4) for water 
heated from the inside surface of the annulus are somewhat higher than the 
predictions of this study. However, the cr i ter ion on which the thermal 
entrance lengths were based is not stated, and the temperature of the coolant 
(or the Prandt l number) is not given in his paper. 



3. HEAT T R A N S F E R IN AN ANNULUS WITH D I F F E R E N T BUT 
CONSTANT W A L L T E M P E R A T U R E S AT THE INNER AND O U T E R WALLS 

3.1 A n a l y s i s 

3.1.1 In t roduc t ion 

The so lu t i ons for P r o b l e m (a), which a r e d e s c r i b e d in S e c ­
t ion 2 of t h i s r e p o r t , app ly when the two wa l l s of the a n n u l u s a r e a t the 
s a m e cons t an t t e m p e r a t u r e . In th i s s e c t i o n the p r o b l e m i s g e n e r a l i z e d to 
the s i tua t ion in which the i n n e r and o u t e r wa l l s of the a n n u l u s a r e a t dif­
f e r e n t but cons tan t wal l t e m p e r a t u r e s . The m e t h o d u s e d i s t ha t of s u p e r ­
pos i t ion . The r e s u l t s ob ta ined a r e g e n e r a l in tha t one wal l of the a n n u l u s 
can be h e a t e d and the o t h e r can be coo led . The b o u n d a r y cond i t i ons for 
Eq . (l ) a r e 

T (0 , r ) = To, r / r i / r,; T ( x , r i ) = T ^ - . T(x , r„ ) = T ^ for x > 0 
(40) 

The a p p r o a c h in so lv ing the h e a t t r a n s f e r p r o b l e m for a fluid 
flowing in an annu lus with a s y m m e t r i c wal l t e m p e r a t u r e s i s s i m i l a r to tha t 
of S e b a n , ( l 2 ) Yih and C e r m a k , ' ! ^ ) and Schenk and B e c k e r s . ( 6 ) H o w e v e r , 
s ince both fully deve loped and t h e r m a l e n t r a n c e r e g i o n s a r e s t u d i e d , the 
sp l i t t ing of the g e n e r a l p r o b l e m in to two s i m p l e r p r o b l e m s with d i f fe ren t 
b o u n d a r y condi t ions i s s i m i l a r to tha t of Ref. 13 . 

3.1 .2' Method of S u p e r p o s i t i o n 

To solve the e n e r g y Eq . (l ) with the b o u n d a r y cond i t i ons (40) 
it i s convenien t to sp l i t the p r o b l e m into two s i m p l e r o n e s . Since the e n e r g y 
equat ion is l i n e a r , the g e n e r a l so lu t ion can be ob ta ined by s u p e r p o s i t i o n of 
the two s i m p l e r s o l u t i o n s . 

Let U denote the g e n e r a l so lu t ion of E q . (l ) with the b o u n d a r y 
condi t ions 

U(0 , r ) = To, r / r j / r„; U(x , r i ) = T ^ U(x,ro) = To for x 2: 0 
(41) 

and le t V denote the g e n e r a l so lu t ion at E q . (l ) with the b o u n d a r y cond i t i ons 

V(0 , r ) = To, r / r i = r„; V(x , r i ) = To, V(x,r„) = T ^ for x > 0 
(42) 

B e c a u s e of the l i n e a r i t y of Eq . (l ), any s u m of so lu t i ons is a l s o a so lu t i on , 
and a p r o p e r addi t ion of so lu t i ons U and V wil l y ie ld a t e m p e r a t u r e d i s t r i b u ­
t ion sa t i s fy ing the b o u n d a r y cond i t i ons of the g e n e r a l p r o b l e m . C o m b i n i n g 
so lu t ions U and V we get 

(43) 
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This equation can be written in the form 

I . 

1 -u To - T^i j + T^, + l^ ^ f ^ A ^ ° -^-J' ^-0 • ^° 
(44) 

where 

U-Tw. I - I. 

and 

fic.i)---^—F^-f^ • ^̂ '̂ 
lo - J-wo ^ - '̂  i 

The functions 0 and f were defined in this manner so that the eigenfunctions 
and eigenvalues obtained in Section 2, Problem (a), could be utilized for the 
present problem, as will become apparent la ter . 

The solution 0 satisfies the energy equation 

^^__±±LM , 1 (47) 
SC I S| \^ S| / | ( l - l i ) 

with the boundary conditions 

0 (0 ,1 ) = 1 ^ - ^ ; 0 ( C d i ) = *( C D = 0 . (48) 
1 " ? i 

Similarly, the solution f satisfies the energy equation 

f . ^ = l ^ ( | ^ ) . 1 ^ (4,) 
sc I si V S|/ ^(^ - ? i ' 

with the boundary conditions 

^(0 ,1) = ^ ^ , ^ ( C l i ) =^(C,1) = 0 . (50) 

The tempera ture distribution given by Eq. (44) satisfies the 
energy equation because 0 and f satisfy that equation. The agreement with 
the boundary conditions of the general problem is demonstrated below: 
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At C = 0. I / l i / l . T = To 

+ T 
^ 0 

T„ -T , . , . ) +T + T o - T ^ J + T ^ „ - T o 

T = To 

At (; - 0 , 1= l i , T = T„ . 

T = (0 + 0) (TO - T ^ . ) + T^^ + (0 + 1 ) ( T O - T ^ J + T^^ - To 

T = T^. 

At C S:0, I = 1, T = T^„ 

T = (0 + 1 ) (̂ To - T^. j + T^^ + (0 + 0) (̂ To - T^^j + T^^ - To 

We, thus, see that the boundary conditions are satisfied. 

3.1.3 Solutions of the Problem 

Although in Section 2 we obtained solutions for a homogeneous 
partial differential equation, Eqs. (47) and (49) are nonhomogeneous . The 
method of solution of nonhomogeneous partial differential equations used 
here is the same as that suggested by Miller.(14) 

To obtain the solution of Eq. (47) with the boundary conditions 
Eq. (48), we introduce a new function defined by 

0 ( M ) = y( ( : . | ) + z ( | ) , (51) 

where z ( | ) is a function of | only and is to be determined. Therefore, we try 
to determine z( | ) so that y((^, | ) satisfies the homogeneous equation. Sub­
stituting Eq. (51) into Eq. (47) we obtain 

S y _ l ^ / Sy\ 1 S / . S z \ , 1 , „ , 
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Hence, if z ( | ) is such that 

± ( . ^ , ) , = . ^ ^ , (53) 
r ^ ^ 1(1 - l i ) 

y(C . | ) will satisfy the homogeneous equation 

S y _ 2 _ S . / , ^ \ (54) 
^SC I S | l ^ s i ^ • 

Equation (53) is readily integrated and gives 

z ( | ) = - , ^ . +c i i n I +C2 , (55) 

where c, and C2 are a rb i t r a ry constants. Any value may be chosen for Cj 
and Cj, and y(^, | ) will still satisfy the homogeneous equation; however, Ci 
and C2 will be so determined that the boundary conditions assume the de­
sirable form. From the second boundary condition of Eq. (48) and Eq. (51), 
we see that 

0 ( M i ) = y ( C . l i ) + z d i ) = 0 

y (C. l i ) = -^(4i) • 

Similarly, from the third boundary condition, we obtain 

0(C-1) = y(C.l) + z ( l ) = 0 , 

or 

y ( C l ) = -z(l) . 

The constants c, and Cj will be so chosen that 

z ( | i ) = z ( l ) = 0 . 

Thus, from Eq. (55) we obtain 

z( l) = ° = 1 - ^-^"^ 

cz 1 - ? i ' 
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and 

? i , „ . , 1 
z : i i ) = 0 = - - - + C, i n l i + 

1 - l i • - " " - 1 - l i 

i n | . 

The so lu t ion for z ( | ) then b e c o m e s 

With t h e s e v a l u e s of Ci and C2, the funct ion y ( C . | ) s a t i s f i e s the 
h o m o g e n e o u s equat ion 

f | y 4 ^ f i ^ ^ l (57) 
sc I S| {"^^di 

and the b o u n d a r y cond i t ions 

y(0, | ) = 0(0, I) - z ( | ) 
«n I 

- ? i 

y ( M i ) = y ( C . i ) = 0 . (58) 

The m e t h o d of so lu t ion of E q s . (5 7) and (5 8) i s i d e n t i c a l with 
that given in Sect ion 2.1.3 and, t h e r e f o r e , wil l not be r e p e a t e d h e r e . Note 
that the l a s t two b o u n d a r y cond i t ions g iven by Eq . (58) a r e i d e n t i c a l with 
those of Eq . ( l l a ) . T h e r e f o r e , the e igenfunc t ions and e i g e n v a l u e s for the 
p r e s e n t p r o b l e m wil l be i d e n t i c a l with t h o s e a l r e a d y found in Sec t ion 2 for 
P r o b l e m (a). The so lu t ion of Eq . (57) with b o u n d a r y cond i t i ons Eq . (58) i s 

CO 

y = Z . C „ R ( | ) e x p ( - x ^ i ; ) . (59) 
n = o 

F r o m the o r thogona l i t y p r o p e r t y of the s o l u t i o n s , the coe f f i c i en t s a r e given 
by 

i,' i-ti) '«>" -« 
f 

(60) 

IfRn d | 
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To solve Eqs. (49) and (50), we introduce a new function de -

(61) 

fined as 

^(Cd) = Y(c,|) + z( | ) 

Using a procedure s imilar to that already discussed, we find that 

Z ( | ) 
1 - 1 I -̂ n g 

= " 1 - l i i n l i 

The function Y(^, | ) satisfies the equation 

« n | 

SC I S| l̂ ^ S| 

with the boundary conditions 

Y(0, I) = V'(0,|) - Z ( | ) = 1 - - ^ ^ . . 

Y(C, li) = Y(C,1) = 0 . 

The solution of Eqs. (63) and (64) is 

CO 

Y = Z DnRn(?)--P(-^n'^) ' 
n=o 

where the coefficient D̂ ^ is given by the relation 

d. 
/ _ ^ n _ | \ 
\ i n | . / IfRn d | 

'ii 
IfRn d | 

Substituting Eqs. (56) and (59) into Eq. (51), we get 

( i ; d ) = Z . C n R ^ ( | ) e x p ( - X | , a + 
1 - I i n I 
1 - 1 , i n I , 

and inserting Eqs. (62) and (65) into Eq. (61) we obtain 

^ ( C , | ) = Z DnRn(?)exp(-X^(;) - Y f | - + : | ^ • 
n = o 1 1 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 
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Substituting Eqs. (67) and (68) into Eq. (44) we find the temperature d i s t r i ­
bution in an annulus with an unsymmetrical ly prescr ibed wall t empera tu re : 

in I 
T = Z CnRn( | ) exp ( -X^ 0 + 1 - ^ ^ To - T ^ J + T 

in I 
Z DnR„( | ) exp ( -X^ ^^^irf, To - T^ J + T^^ - To 

(69) 

- C , and, in the special case that T = T - T^ , we get 

Z C„Rn( | ) exp(-X^ 0 + 1 -
in I 

in l i 

i n 
Z (cn - C n ) R ( | ) e x p ( - 4 0 + j f | - ( T o - T ^ ) + 2 T „ - To 

(T„ - T^) Z CnRn( l )exp(-X^ ?) + T„ (70) 

This is identical with Eq. (12). 

The expressions for some heat t ransfer pa ramete r s follow 
readily from the definitions given in Section 2.1.4 [Eqs. (21) and (22)] and 
the temperature given by Eq. (69) and a re , therefore, not repeated here . 

3.2 Discussion of Results 

For practical purposes the mixing cup tempera ture is frequently of 
greater use than the t ransverse temperature distribution. In addition, the 

value of Nusselt number as a function of the parameter -—(—1 is of practical 
PeVro/ 

interest . However, it is not practicable to present all resul ts of interest in 
this report for the range of parameters investigated. In view of the fact that 
the Nusselt number is not unique when heat is added at both surfaces, only 
heat fluxes are calculated. 
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By way of i l lustration, heat fluxes were computed for several 
values of the temperature ratio X = ( Twi " ^ ' ' ) / ( - '^w„ - Toj and the case 

when the ratio of the inside to the outside radius of the annulus is 0.5. The 
heat flux distributions at the outside wall of the annulus as obtained by sub­
stituting Eq. (69) into Eq. (21 ), which defines the heat fluxes, are shown in 
Figure 12 for various values of the parameter x-

The resul ts could be more readily understood if we note that, 
for either heating or cooling at both surfaces, we have the condition that 
Y > 0. When one surface is heated and the other is cooled, we have that 
y < 0. The special case x - 1 corresponds to the situation when the t em­
pera tures at the inner and outer walls are the same, and the case x = 0 is 
for the problem when the inner wall is kept at the temperature To, and finally 
when X = t '=° . the outside wall is kept at the temperature To-

Note that for certain negative values of X the heat flux pa ram­
eter changes sign. From Figure 12, we see that for X = "4, heat is added to 

the fluid up to zr—(—] = 0.03, and for la rger values of the abscissa heat is 
P e \ r o / 

extracted from the coolant. One may also note that the length required to 
approach fully developed conditions is greater for unsymmetrical ly than for 
symmetr ical ly prescr ibed wall tempera tures of the annulus. 
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4. HEAT TRANSFER IN AN ANNULUS WITH ARBITRARY 
AXIAL WALL TEMPERATURE VARIATIONS 

4.1 Analysis 

4.1.1 Introduction 

In engineering practice problems are frequently encountered 
in which the heating surface temperature is not constant, yet it is still r e ­
quired to be able to calculate heat t ransfer ra te . Because of the linearity 
of the energy equation (l) , a sum of solutions is again a solution. The meth­
od of superposition of solutions provides a powerful analytical tool for this 
purpose. It is thus possible to construct a solution for any kind of a rb i t ra ry 
variation of wall temperature with length by merely breaking the wall tem­
perature up into a number of constant- temperature steps and using the 
solutions obtained in previous sections as a solution for each step. 

The preceding resul ts may be extended to include the cases 
for which the temperature of the inner and/or the outer walls of the annulus 
are arbi t rary functions of the axial distance, Tw(x), for x ax j >0, through 
the use of Duhamel's formulae. This is identical with the superposition 
techniques employed in Refs. 5 and 13. 

4.1.2 Generalization of Results of Section 2 - Arbi t rary Wall 
Temperature Distribution 

If the wall temperature has the distribution as shown in Fig­
ure 13, the temperature distribution in the annulus can be obtained from 
the solutions presented in Section 2 by superposition. The wall temperature 
distribution can be written mathematically as 

T = To for X £ 0 

T = Tw for 0 < X S Xi (71) 

T = Tw(x) for X > Xi 

with Tw(0) = To. The dimensionless temperature can be expressed as 

^ " ^° - 1 - I " 1 ^ = 1 - e ( C d ) . (72) 
T ^ - TQ TQ - Tv 

where 6(4,1) is given by Eq. (12). The solution for the present problem is 
obtained by means of Duhamel's formula(15) as 

r 'n< d T„(T)) 
T - To = [1 - 0(C. | ) ] ( T w - T „ ) + / [1 - 9 ( C - T ] . I ) ] , dTi . (73) 
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The f i r s t t e r m on the r igh t hand s ide of Eq . (73) r e p r e s e n t s 
the t e m p e r a t u r e d i s t r i b u t i o n in the fluid due to the s t e p i n c r e a s e in the wal l 
t e m p e r a t u r e a t C= 0. If, h o w e v e r , T ^ h a s d i s c o n t i n u i t i e s a tTj j , the i n t e g r a l 
i s r e p r e s e n t e d ( 5 ) by the s u m m a t i o n of the d i s c o n t i n u i t i e s 

S [1 - e( C- T]j, | ) ] [Tw( r ) | ) - Tw(^j-)] . (74) 
j = i 

The c o m b i n a t i o n of the R i e m a n n i n t e g r a l of Eq . (73) and the s u m m a t i o n 
given by Eq . (74) m a y be r e p r e s e n t e d by what i s known a s S t ie l t j e s i n t e -
g r a l . ( l ^ ' The d e r i v a t i v e d T^(r])/dr) is p r e s u m a b l y a known function of T), 
and e i s a known so lu t ion of the p r o b l e m with a s t e p j u m p in the wal l 
t e m p e r a t u r e . 

The e v a l u a t i o n of the h e a t t r a n s f e r r a t e at t, for e i t h e r the i n ­
n e r or the o u t e r wa l l of the annu lus fol lows r e a d i l y f r o m the def in i t ions 
g iven in Eq . (21) . The hea t t r a n s f e r coef f ic ien t and the N u s s e l t n u m b e r can 
a l s o be c a l c u l a t e d . F r o m E q s . (31), (73), and (74) the loca l hea t flux at the 
inne r wa l l i s g iven by 

k r r'^~-^ d T ^ ( r ) ) 
qi(i :) = ^ j e ' ( i : d i ) ( T w - T o ) + J 9 ' ( 0 ^ . l i ) - ^ 7 ^ dT) 

+ Z ^ ' ( ^ - ^ - ? i ) [ T w ( T ) / ) - Tw(TlJ)] I . (75) 

j = i J 

D i f f e r en t i a t i on of E q s . (73) and (74) wi th r e s p e c t to | at | = 1 
and s u b s t i t u t i o n in Eq . (21) y i e l d the h e a t flux at the ou te r wa l l : 

k f r"^^^ d T j r , ) 
qo(C) = - 7 > ' ( C . 1 ) ( T ^ - To) + j e'(C -r,. D ^ dr] 

+ Z e ' (C- r ) . l ) [ T j ^ j ' ) - T^(T)J)] V . (76) 

j = i -J 

In general , for any given problem, the integral and summation 
of Eqs. (73) and (74) must be evaluated. In case T^{r]) cannot be represented 
by a simple function, the integrals can be evaluated numerically. 

4.1.3 Linear Wall Temperature Variation 

For certain elementary types of wal l - temperature variation, 
an analytical expression for q"(C) may be easily evaluated. As an example 



of an app l ica t ion of the me thod , the so lu t i ons wi l l be ob ta ined for P r o b ­
l e m s (b) and (c) for the w a l l - t e m p e r a t u r e v a r i a t i o n i l l u s t r a t e d in F i g u r e 14. 
Th i s inc ludes a s t ep in the wal l t e m p e r a t u r e at r) = 0 (^ = O) and a l i n e a r 
v a r i a t i o n of wal l t e m p e r a t u r e t h e r e a f t e r . Th i s type of wa l l t e m p e r a t u r e 
v a r i a t i o n is of i n t e r e s t b e c a u s e it c o r r e s p o n d s to the c a s e giving r i s e to a 
fully e s t a b l i s h e d t e m p e r a t u r e p rof i l e (far away f r o m the e n t r a n c e ) and a 
cons tan t Nusse l t n u m b e r for the c a s e of c o n s t a n t hea t flux at the wa l l . 

The wal l t e m p e r a t u r e v a r i a t i o n is e x p r e s s e d a s 

To + a + bT) . (77) 

Subst i tut ing Eq. (77) into Eq. (76), inc luding one s t e p at T] = 0, and s u b s t i t u t ­
ing b for dT^/dT), we obtain 

q'oiO 

+ b 

a X C n R ' ( l ) e x p ( - X ^ a 

f Z C n R ' ( l ) exp[-X?i(OTl)]dTlT . (78) 

P e r f o r m i n g the i n t eg ra t i on , subs t i tu t ing l i m i t s , and not ing tha t 

-d- i ! ) 
Z -nR^d)/̂ ^ 

Eq. (78) r e d u c e s to 

qi'(a 

- b 

a I C n R ; , ( l ) e x p ( - X j ^ O 

( 1 - l i ) , V < :nRn( l ) 
^ ^ X^ 

n = o •^n 

4 ' ^ i l e x p ( - X ^ O (79) 

If d e s i r e d , the loca l mix ing cup t e m p e r a t u r e can be c a l c u l a t e d by 
subs t i tu t ing Eq. (73) into Eq. (22). Howeve r , the mix ing cup t e m p e r a t u r e 
can be obtained in a s i m p l e r fashion f r o m the fol lowing c o n s i d e r a t i o n . In­
t eg ra t i ng Eq. (76) up to (; to d e t e r m i n e the to ta l hea t t r a n s f e r r a t e up to this 
point, and then applying the e n e r g y b a l a n c e to eva lua t e the mix ing cup t e m ­
p e r a t u r e at C,, we get 

qo(0 27rr, R e P r rn 
1 li 

< 
q o ( a d f (80) 
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and 

qo(?) = 7T(r§ - rf) upc (Tm - Tj i l ) 

Combining these two equations, evaluating the integral, and substituting 
l imits, we obtain for the mixing cup temperature 

To) 
4 f r ycnRii(i) , , 2 . , . ( ' -g j ) 1 

+ b 
(1-if) v c , R ' ( i ) , z ,̂ y 
—T C - Z^ Z% exp(-XnO + A 

n=o •^n n=o 

^^nRnd) 
(82) 

- To = a + b r + 

+ b 

4 f y CnRn(l) . 2^, 

.r̂ i!)rn4̂ "̂ ^̂ ^̂ "̂'"̂ ^ 
OD CO 

r V CnR^l) V C „ R ; , ( 1 ) 

2.^^-2.-^;^ exp(-X„C) 
L n=o " n=o " 

(83) 

If desired, the local heat transfer coefficient and Nusselt num­
ber can now be calculated. Substituting Eqs. (78) and (83) into Eq. (25) and 
noting that Tw = To + a + b ^ we get 

(84) 

Note that if b = 0, this equation reduces to Eq. (30), an equation for constant 
wall temperature . For large values of (J all of the summations containing 
the exponentials go to zero and the asymptotic Nusselt number becomes 

(-f,)('-eD 
2 

a ^ c „ R M l l e < p ( - X ^ ^ ) - b 

. n=0 ^ 

L n=0 -• 

\ ^ c R'dl \ ^ c R'(l) , , , 

n-O " n-0 '̂  

N u a . o = - • 
( i - i i ) ( i - i ! ) 

(85) 

Z '•,!>;.( 1) 

This se r ies converges extremely rapidly. For example, for a value of 
parameter | i = 0.8, the first t e rm gives a value a fraction of a per cent 
smal ler than the actual value. 
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Using a s i m i l a r p r o c e d u r e , an equ iva l en t e x p r e s s i o n i s ob­
t a ined for the loca l N u s s e l t n u m b e r when the ou te r wa l l i s i n s u l a t e d : 

•0 ( ' -
:<d • Ml E ^n«'„(fO {<i) 

(86) 

and the a s y m p t o t i c N u s s e l t n u m b e r r e d u c e s to 

N u , 
; i - i i ) ( i - i i ) (87) 

!̂Z CnR;( l i ) 

Heat f luxes , hea t t r a n s f e r coef f ic ien t s , and N u s s e l t n u m b e r s 
can a l s o be ca l cu l a t ed for the c a s e that hea t is t r a n s f e r r e d at both s u r f a c e s 
of the annu lus . Now, the t e m p e r a t u r e d i s t r i b u t i o n s ob ta ined in Sect ion 3 
have to be used . Since in th i s p r o b l e m the wal l t e m p e r a t u r e s Twi ^'^^ '^^o 
have to be speci f ied , no g e n e r a l r e s u l t s va l id for a l l v a l u e s of T-wj and Two 
can be ca l cu la t ed , and it is n e c e s s a r y to so lve the p r o b l e m for spec i f i c 
va lues of t h e s e p a r a m e t e r s . F o r th i s r e a s o n , no c a l c u l a t i o n s for the c a s e 
a r e m a d e . However , the h e a t t r a n s f e r p a r a m e t e r s of i n t e r e s t can be 
r e a d i l y ca l cu l a t ed f r o m the r e s u l t s g iven in T a b l e s B - a t h r o u g h B - d by 
m e a n s of a p r o c e d u r e iden t i ca l with that e m p l o y e d in th i s s ec t i on . 

4.2 D i s c u s s i o n of R e s u l t s 

F i g u r e 15 shows the v a r i a t i o n of the a s y m p t o t i c N u s s e l t n u m b e r s 
with p a r a m e t e r | i for two c a s e s : (1) i n s u l a t e d ou t s ide wal l of the annu lus ; 
and (2) i n su l a t ed ins ide wal l of the annu lus . Note tha t a s | i — " 1 , the 
a s y m p t o t i c Nusse l t n u m b e r for the s i tua t ion when the ou t s ide s u r f a c e is 
i n su l a t ed a p p r o a c h e s the N u s s e l t n u m b e r for the c a s e when the i n s i d e s u r ­
face is i n su la t ed . This fact is a l s o r e a d i l y a p p a r e n t f r o m p h y s i c a l c o n s i d ­
e r a t i o n s . When r i—»ro it does not m a k e any d i f fe rence which s u r f a c e is 
hea ted and which is insu la ted , and the N u s s e l t n u m b e r s a r e t h e r e f o r e 
iden t i ca l . 

The r e s u l t s given in F i g u r e 10 and F i g u r e 15 a r e c o n s i s t e n t in 
t r e n d with those of Ref. 17 for l a m i n a r hea t t r a n s f e r in a p ipe . S e l l a r s 
et a l . show that the a s y m p t o t i c N u s s e l t n u m b e r s a r e h ighe r when the wa l l 
t e m p e r a t u r e v a r i e s l i n e a r l y with the ax ia l d i s t a n c e than \vhen it i s c o n s t a n t . 
As was a l r e a d y men t ioned , the c a s e of l i n e a r v a r i a t i o n of wa l l t e m p e r a t u r e 
c o r r e s p o n d s to the c a s e giving r i s e to fully e s t a b l i s h e d t e m p e r a t u r e p ro f i l e 
and cons tan t N u s s e l t n u m b e r s far away f r o m the e n t r a n c e for c o n s t a n t hea t 
flux appl ied at the wa l l . T h u s , the r e s u l t s g iven in F i g u r e 15 a r e a l s o va l id 
for th i s l a t t e r bounda ry condi t ion . 

file:///vhen
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Appendix A 

THE ANALOGUE COMPUTER SOLUTION OF EQUATION (13) 

by 

Louis C. Just 

The analogue computer used in this study was an Electronics Asso­
ciation, Inc., Model 131 R. For specific information about the installation 
at Argonne, the reader is refer red to Refs. 18 and 19-

Analogue computers of this type are limited to accuracies of 0.01%, 
an accuracy that can only be attained in the solution of simple linear equa­
tions. The complexity of this problem rules out accuracies this high. The 
formulation of Rn(|) used two dividers and two mult ipl iers . These units 
have an accuracy within ±0.025% so that we can only be sure of ±0.1% in 
our answers . To further check the equipment and circuit , the problems 
were rechecked on another computer with a complete change in equipment. 

i n | was generated directly by the machine, by means of the 
equation 

r^ 1 
i n | = T d | + ^n | i 

-^li ^ 
Function generating equipment was considered, but this method was used 
because of its accuracy and convenience. Checks were performed and show 
that i n | was generated to within the accuracy of the equipment used (0.025% 
due to the formation of l / | ). 

The evaluation of the expansion coefficients Cn is subject to still 
more inaccuracy because of additional multiplications and divisions. Over­
all, Cĵ  should be accurate within ±0.15%. 

The method of solving Eq. (13) consists of assuming a value of Rn 
or Rn at | = | i , whichever is not p rescr ibed by the boundary conditions 
Eq. (14), and then integrating Eq. (13). The determination of the eigen­
values Xn was by a t r i a l - a n d - e r r o r method of iteration. A value of Xn 
was assumed, and the integration of Eq. (13) was performed. If the appro­
priate boundary condition at | = 1 was not satisfied, an improved value of 
X^ was chosen. The process was repeated until the boundary condition at 
I = 1 was satisfied. This procedure has a source of e r ro r built in: it is 
up to the operator to decide how well the boundary condition is satisfied. 
A circuit for automatically holding the solution at | = 1 was used, thereby 
eliminating any inaccuracies due to reading Rn and Rn at | = 1 ± e. 
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In the course of this study, five values of | i (0.05, 0.2, 0.5, 0.8, and 
0.95) were investigated, with boundary conditions Eq. (14). The resul t s 
for | i = 0.95 are not given because the computer would not repeat the r e ­
sults. This nonrepeatability was probably due to the fact that high gains 
were involved. 

It is believed that the resul ts for boundary conditions Eq. (14b) a re 
the least accurate. For these boundary conditions, Rn(l) was found to be 
"zero" for a range of eigenvalues Xn- This insensitivity of Xn on Rn(l) 
can be partially eliminated by observing 100 Rn(|) instead of Rn( | ) . How­
ever, this does not completely eliminate all e r r o r s . 
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Appendix B 

ii 

0.05 

0.2 

0.5 

0.8 

n 

0 

I 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

T a b l e B - a 

CONSTANTS F O R P R O B L E M (a) 

K 
13.17 

69.33 

167.1 

309.0 

492.1 

718.9 

21.71 

107.1 

256.6 

470 .6 

750.2 

1095 

59.37 

286.1 

681.7 

1246 

1983 

2889 

370.9 

1757 

4171 

7670 

12160 

17590 

C n 

- 2 . 8 7 6 

1.120 

- 1 . 6 0 9 

0.8709 

- 1 . 3 1 9 

0.7489 

- 1 . 5 5 7 

0.3917 

- 0 . 9 9 2 6 

0.3037 

- 0 . 8 2 0 2 

0.2836 

- 1 . 7 1 2 

0 .2054 

- 1 . 1 1 1 

0.1922 

-0 .8980 

0 .1748 

- 3 . 6 3 8 

0.2079 

- 2 . 3 8 6 

0.2253 

2.217 

0.1532 

C n R k d i ) 

14.38 

-5 .600 

8.047 

- 4 . 3 5 4 

6.594 

- 3 . 7 4 4 

7.887 

- 1 . 9 5 8 

4.963 

- 1 . 5 1 8 

4 .108 

- 1 . 4 1 8 

8.585 

- 1 . 0 2 7 

5.855 

-0 .9610 

4.490 

-0 .8741 

18.19 

- 1 . 0 3 9 

11.93 

- 1 . 1 2 6 

11.09 

- 0 . 7 6 5 9 

CnRn(l) 

- 2.301 

- 0.8960 

- 1.481 

- 0 .7838 

- 0.9750 

- 0.7489 

- 3.076 

- 0.7736 

- 1.985 

- 0.6149 

- 1.702 

- 0.6162 

- 5.881 

- 0.7036 

- 3.833 

- 0.6727 

- 3.143 

- 0.6424 

- 1 5 . 9 3 

- 0.9459 

- 1 1 . 2 1 

- 1.098 

- 1 1 . 2 5 

- 0.8234 
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T a b l e B - b 

CONSTANTS F O R P R O B L E M (b) 

4i n X^ Cn C n R k d i ) CnRk( l ) 

0.05 

0.2 

0.5 

0.8 

0 

1 

2 

3 

4 

5 

0 

I 

2 

3 

4 

5 

0 

I 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

1.843 

42.33 

124.7 

252.5 

419.3 

632.6 

4.224 

66.57 

194.7 

387.6 

643.5 

966.1 

15.29 

182.8 

518.2 

1025 

1705 

2553 

127.4 

1120 

3127 

6144 

10180 

15230 

-1 .801 

- 0 . 5 3 8 8 

- 0 . 3 0 8 4 

-0 .2820 

- 0 . 2 4 4 4 

- 0 . 2 2 8 4 

-0 .9697 

-0 .4315 

-0 .3456 

-0 .3037 

-0 .2776 

-0 .2529 

-1 .059 

-0 .5978 

- 0 . 4 9 0 3 

-0 .4135 

-0 .3667 

-0 .3182 

-2 .992 

- 1 . 3 8 3 

-1 .170 

-0 .9885 

- 0 . 9 7 7 8 

-0 .8226 

9.005 

2 .694 

1.542 

1.410 

1.222 

1.142 

4 .848 

2.158 

1.728 

1.518 

1.388 

1.265 

5.297 

2.989 

2.452 

2.067 

1.833 

1.591 

11.50 

6.917 

5.850 

4.942 

4.489 

4 .113 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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l i 

0.05 

0.2 

0.5 

0.8 

n 

0 

1 

2 

3 

4 

5 

0 

I 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

0 

1 

2 

3 

4 

5 

T a b l e B - c 

CONSTANTS F O R P R O B L E M (c) 

^l 
8.460 

55.21 

141.9 

270.5 

441.1 

661.4 

10.89 

77.97 

208.1 

402.9 

661.2 

984.2 

23.39 

194.5 

534.9 

1043 

1723 

2573 

127.4 

1165 

3231 

6630 

10450 

15520 

C n 

- 1 . 4 2 6 

0.7181 

- 0 . 4 9 7 3 

0.3841 

-0 .3175 

0.2165 

-1 .371 

0.6004 

- 0 . 3 8 5 8 

0 .2843 

-0 .2266 

0.1867 

-1 .312 

0.4806 

-0 .2935 

0.2132 

-0 .1634 

0.1335 

- 1 . 2 6 6 

0.4203 

-0 .2509 

0.1806 

-0 .1422 

0 .1163 

CnRkdi) 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

CnRn( l ) 

- 1.783 

- 1.269 

- 1.119 

- 1.008 

- 0.9685 

- 0.8823 

- 2.229 

- 1.591 

- 1.379 

- 1.237 

- 1.161 

- 1.082 

- 3.869 

- 2.739 

- 2.333 

- 2.117 

- 1.944 

- 1.809 

-10 ,41 

- 7.292 

- 6.154 

- 5.613 

- 5.298 

- 5.001 



36 

Table B - d 

EXPANSION C O E F F I C I E N T S FOR GENERALIZED P R O B L E M (a) 
D I F F E R E N T T E M P E R A T U R E S AT THE INSIDE AND 

OUTSIDE WALLS OF THE ANNULUS 

ii 0.05 0.2 0.5 

n \ 

0 

1 

• 2 

3 

4 

5 

Cn 

- 0 . 6 9 2 4 

- 0 . 4 2 9 1 

- 0 . 3 4 0 5 

- 0 . 2 9 6 9 

- 0 . 2 4 9 0 

- 0 . 2 2 7 3 

Dn 

- 2 . 1 8 4 

1.549 

- 1 . 2 6 8 

1.168 

- 1 . 0 7 0 

0.9762 

Cn 

- 0 . 5 3 7 1 

- 0 . 3 6 8 5 

- 0 . 3 2 1 6 

- 0 . 2 8 8 9 

- 0 . 2 7 0 1 

- 0 . 2 4 8 7 

Dn 

- 1 . 0 2 0 

0.7602 

- 0 . 6 7 1 0 

0 .5926 

- 0 . 5 5 0 1 

0 .5323 

Cn Dn 

-0.7307 -0.9813 

-0,5486 0.7540 

-0.4823 -0.6287 

-0.4162 0.6084 

-0.4104 -0.4876 

0.5323 -0.3394 0,5142 -0.7826 

Cn 

-1 .710 

-1 .372 

-1 .104 

-0 .9854 

-0 .8690 

-0 .7826 

Dn 

-1 .928 

1.651 

-1 .282 

I .211 

-1 .348 

0.935J 
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N O M E N C L A T U R E 

Symbol Def ini t ion 

An Coeff ic ien t in E q u a t i o n (19) 

a C o n s t a n t in E q u a t i o n (77) 

b C o n s t a n t in E q u a t i o n (77) 

Cn Coeff ic ient def ined by E q u a t i o n (60) 

Cn Coef f ic ien t def ined by E q u a t i o n (15) 

Cp Specif ic h e a t at c o n s t a n t p r e s s u r e 

Ci, Cz I n t e g r a t i o n c o n s t a n t s in E q u a t i o n (55) 

Dg E q u i v a l e n t d i a m e t e r def ined as 2(ro - r i ) 

Dn Coef f ic ien t def ined by E q u a t i o n (66) 

f F u n c t i o n def ined a s u / 2 u 

h Hea t t r a n s f e r coef f ic ien t 

k T h e r m a l conduc t iv i t y 

Nu N u s s e l t n u m b e r def ined by Equa t ion (21) 

Nu^db N u s s e l t n u m b e r wi th one a d i a b a t i c wa l l of the annulus for P r o b l e m (a) 

P e P e c l e t n u m b e r def ined a s R e P r 

P r P r a n d t l n u m b e r def ined a s /ncp/k 

p P r e s s u r e 

Re R e y n o l d s n u m b e r def ined as puDe/fi 

Rn E igenfunc t ion o b t a i n e d f r o m the so lu t ion of Equa t ion (13) 

r R a d i a l c o o r d i n a t e 

q Hea t t r a n s f e r r a t e 

q" H e a t flux 

T T e m p e r a t u r e 

T j ^ Mixing cup t e m p e r a t u r e def ined by Equa t ion (22) 

To T e m p e r a t u r e at the i n l e t to the annu lus 

Tw T e m p e r a t u r e a t the wa l l 

u L o c a l v e l o c i t y 

X Ax ia l c o o r d i n a t e 

Y F u n c t i o n def ined by E q u a t i o n (61) 
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Symbol Definition 

y Function defined by Equation (51) 

Z Function defined by Equation (61) 

z Function defined by Equation (51) 

Greek Symbols 

l̂ n Eigenvalue determined from Equation (20) 

t, Dimensionless independent variable defined as (l - | i ) x/Pe TQ 

T) Dummy independent variable 

9 Dimensionless temperature defined as (T - Tw)/(To - T^) 

Dimensionless mixing cup temperature defined by Equation (26) • ' m 

, 2 Eigenvalue satisfying Equation (13) and boundary conditions 
Equation (14) 

jl D y n a m i c v i s c o s i t y 

I D i m e n s i o n l e s s r a d i a l v a r i a b l e d e f i n e d a s r / r o 

p D e n s i t y 

0 F u n c t i o n d e f i n e d b y E q u a t i o n ( 4 5 ) 

X T e m p e r a t u r e r a t i o d e f i n e d a s ( T w i - T o ) / ( T w o - To) 

Ip Function defined by Equation (46) 

Subscripts 

a Designates the asymptotic value 

e Designates the entrance length 

i Designates a value of a variable of a function evaluated at the inside 

surface of the annulus 

n Designates the nth eigenvalue or eigenfunction 

0 Designates a value of a variable or a function evaluated at the out­
side surface of the annulus 

Superscripts 

Denotes differentiation with respect to | 

Denotes an average value 
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